Domain 4 • Lesson 23

Circles

Getting the Idea

A circle is the set of all points in a plane that are the same distance from a given point called the center. A circle is named by its center.

A radius is the distance from the center of a circle to any point on the circle. $\overline{O K}, \overline{O L}$, and $\overline{O M}$ are radii of circle O.
A diameter is the distance across a circle through its center.
The length of a diameter is always 2 times the length of a radius.

$\overline{L M}$ is a diameter of circle O.
Circumference is the distance around a circle. The circumference of a circle is the product of its diameter and π, or pi. Use 3.14 or $\frac{22}{7}$ as approximations for π in computations.
The table below shows the formulas for finding the circumference and area of a circle.

Formulas

circumference	$C=\pi d$ or $C=2 \pi r$
area	$A=\pi r^{2}$

Example 1

What is the circumference of this circle? Use 3.14 for π.

Strategy Use the formula for the circumference of a circle.

Step 1 Write the formula for circumference when you know the radius.

$$
C=2 \pi r
$$

Step 2 Substitute 3 for r and 3.14 for π. Then multiply.

$$
\begin{aligned}
& C=2 \pi r \\
& C \approx 2 \times 3.14 \times 3 \quad \text { Note: Use } \approx \text { because } 3.14 \text { is an estimate } . \\
& C \approx 18.84
\end{aligned}
$$

Solution The circumference of the circle is about 18.84 meters.

Example 2

The circumference of a circle is 9π inches. What is the diameter of the circle?

Strategy Use the formula for the circumference of a circle.

Step 1 Write the formula for the circumference when you know the diameter.

$$
C=\pi d
$$

Step 2 Substitute 9π for C.

$$
9 \pi=\pi d
$$

Step 3 Divide both sides of the equation by π.

$$
\begin{aligned}
9 \pi & =\pi d \\
\frac{9 \pi}{\pi} & =\frac{\pi d}{\pi} \\
9 & =d
\end{aligned}
$$

Solution The diameter of the circle is 9 inches.

The formulas for the circumference of a circle and the area of a rectangle can help you find a formula for the area of a circle.

Imagine cutting a circle into an equal number of pieces, such as 8 pieces. Arrange the pieces to form as close to a rectangle as possible.

As you can see, the sides are not straight, so it is not a rectangle. However, as the pieces of the circle get smaller, when arranged to make a rectangle, the sides will be straight.
Since the circumference of a circle is $2 \pi r$, the length of the rectangle is $\frac{1}{2}$ the circumference. So, the length is $\frac{1}{2} C=\frac{1}{2} \times 2 \pi r$, or πr.
The width of the rectangle is about the same as the length of the radius, r, of the circle. The area of a rectangle is $/ w$, so the area of the circle is $\pi r \times r$, or $A=\pi r^{2}$.

Example 3

A circle has a diameter of 8 inches. What is the area of the circle? Use 3.14 for π.

Strategy Use the formula for the area of a circle.

Step 1 Use the diameter to find the radius.
The length of the radius is $\frac{1}{2}$ the length of the diameter.
The diameter is 8 .
$8 \div 2=4$, so the radius is 4 inches.
Step 2 Write the formula for the area of a circle.

$$
A=\pi r^{2}
$$

Step 3 Substitute 4 for r and 3.14 for π. Solve.

$$
\begin{aligned}
& A=\pi r^{2} \\
& A \approx 3.14 \times 4 \mathrm{in} . \times 4 \mathrm{in} . \quad \text { Again, use } \approx \text { because } 3.14 \text { is an estimate. } \\
& A \approx 50.24 \mathrm{in.}^{2} .
\end{aligned}
$$

Solution The area of the circle is about 50.24 in. ${ }^{2}$

Example 4

The area of a circle is 25π square centimeters. What is the radius of the circle?

Strategy Use the formula for the area of a circle.

Step 1 Write the formula for the area of a circle.

$$
A=\pi r^{2}
$$

Step 2 Substitute 25π for A.

$$
25 \pi=\pi r^{2}
$$

Step 3 Divide both sides of the equation by π.

$$
\begin{aligned}
25 \pi & =\pi r^{2} \\
\frac{25 \pi}{\pi} & =\frac{\pi r^{2}}{\pi} \\
25 & =r^{2}
\end{aligned}
$$

Step 4 Take the square root of both sides of the equation to find the value of r.

$$
\begin{aligned}
25 & =r^{2} \\
\sqrt{25} & =\sqrt{r^{2}} \\
5 & =r
\end{aligned}
$$

Solution When the area of a circle is 25π square centimeters, the radius is 5 centimeters.

Coached Example

Philip is building a go-cart. The wheels he uses on the go-cart have a radius of 6 inches. What are the circumference and the area of each wheel?

What is the formula for the circumference of a circle when the radius is given?

Use 3.14 for π and substitute the length of the \qquad into the formula.
$C \approx$ \qquad
Multiply.
$C \approx$ \qquad
What is the formula for the area of a circle? \qquad
Use 3.14 for π and substitute the length of the \qquad into the formula. $A \approx$ \qquad
Multiply.
$A \approx$ \qquad
The circumference of each wheel is about \qquad and the area is about \qquad .

Lesson Practice

Choose the correct answer.

1. A rose garden is circular. The diameter of the garden is 18 feet. Which is closest to the total area of the garden? Use 3.14 for π.
A. $\quad 56.52 \mathrm{ft}^{2}$
B. $\quad 63.59 \mathrm{ft}^{2}$
C. $\quad 113.04 \mathrm{ft}^{2}$
D. $254.34 \mathrm{ft}^{2}$
2. A circular swimming pool has a radius of 15 feet. The family that owns the pool wants to put up a circular fence that is 5 feet away from the pool at all points. Which is closest to the circumference of the fence they will need? Use 3.14 for π.
A. $\quad 94.2 \mathrm{ft}$
B. 125.6 ft
C. 157 ft
D. 188.4 ft
3. Lana is putting lace trim around the border of a circular tablecloth. The tablecloth has a diameter of 1.2 meters. To the nearest meter, what is the least amount of lace she needs? Use 3.14 for π.
A. 3 m
B. 4 m
C. 7 m
D. 8 m
4. Randy's bicycle tires have a diameter of 42 centimeters. Which is closest to the circumference of one of the tires?
Use 3.14 for π.
A. $\quad 65.94 \mathrm{~cm}$
B. $\quad 87.14 \mathrm{~cm}$
C. 131.88 cm
D. 441 cm
5. Pete needs to install a circular window with a radius of 7.25 inches. Which is closest to the amount of glass he will need? Use 3.14 for π.
A. 22.77 in. ${ }^{2}$
B. 41.26 in. ${ }^{2}$
C. 45.53 in. ${ }^{2}$
D. 165.05 in. ${ }^{2}$
6. At Palermo Pizzeria pizzas are sold by their diameter. Rihanna orders a 14 -inch pizza. Which is closest to the area of the pizza? Use 3.14 for π.
A. $\quad 21.98$ in. ${ }^{2}$
B. 43.96 in. ${ }^{2}$
C. 153.86 in. ${ }^{2}$
D. 307.72 in. ${ }^{2}$
7. A circular pin has a diameter of 6.2 centimeters. Which is closest to the area of the pin? Use 3.14 for π.
A. $30.18 \mathrm{~cm}^{2}$
B. $\quad 19.47 \mathrm{~cm}^{2}$
C. $15.54 \mathrm{~cm}^{2}$
D. $\quad 9.74 \mathrm{~cm}^{2}$
8. What is the radius of a circle when the circumference is $16 \pi \mathrm{~cm}$?
A. 16 cm
B. 12 cm
C. 8 cm
D. 4 cm
9. The circle below is divided into 6 equal pieces.

A. Explain how to use the formulas for the circumference of a circle and the area of a rectangle to find the formula for the area of a circle.
\qquad
\qquad
\qquad
\qquad
\qquad
B. Use your explanation from Part A to find the area of the circle if the length of the radius is 3 centimeters. Check that the area is the same when you use the formula for the area of a circle. Show your work.
\qquad
\qquad
\qquad
10. Tires come in several sizes. The radii of three tires are given. Circle the approximate circumference of each tire. Use 3.14 for π.

13 in.:	16.14	in.	14 in.:	43.96	in	16 in.:	50.24
	40.82			87.92			100.48
	81.64			615.44			803.84

11. Draw a line from each area of a circle in the left column to the corresponding circumference of the circle in the right column.
A. 25π units $^{2} \bullet \quad 4 \pi$ units
B. $\quad 16 \pi$ units 2

- 20π units
C. 100π units 2
- 10π units
D. 4π units 2
- 8π units

12. Look at the circle. Which is a true statement? Circle all that apply.

A. The diameter is 5 m .
B. The circumference is $5 \pi \mathrm{~m}$.
C. The diameter is 10 m .
D. The area is $25 \pi \mathrm{~m}^{2}$.
E. The circumference is $25 \pi \mathrm{~m}$.
F. The radius is 5 m .
G. The area is $10 \pi \mathrm{~m}^{2}$.
13. A circular flower garden has an area of 81π square inches. Select True or False for each statement.
A. The circumference is 9π in.
\bigcirc True \bigcirc False
B. The radius is 9 in .TrueFalse
C. The diameter is 9 in.
\bigcirc TrueFalse
D. The circumference is 18π in.
\bigcirc TrueFalse
14. Dartboards come in different sizes. Circle the approximate area of a dartboard given each diameter. Use 3.14 for π.

$45.1 \mathrm{~cm}:$| 142 |
| ---: |
| 1,597 |
| 6,387 | $\mathrm{~cm}^{2}$ $25 \mathrm{~cm}: \begin{array}{r}79 \\ 491 \\ 1,963\end{array} \mathrm{~cm}^{2}$ $45.7 \mathrm{~cm}: \begin{array}{r}143 \\ 1,639 \\ 6,558 \\ \hline\end{array} \mathrm{~cm}^{2}$

15. The bottom of a cup is a circle with a diameter of $4 \frac{1}{4} \mathrm{in}$. Which is a true statement? Circle all that apply. Use 3.14 for π.
A. The radius is $8 \frac{1}{2}$ in.
B. The circumference is about 13.3 in .
C. The area is about $14.2 \mathrm{in}^{2}$.
D. The area is about $56.7 \mathrm{in}^{2}$.
E. The circumference is about 26.7 in .
F. The radius is $2 \frac{1}{8}$ in.
16. A small swimming pool has a circumference of 3π feet. Is each statement about the pool true? Select Yes or No.
A. The radius is 3 ft .
Yes
$\bigcirc \mathrm{No}$
B. The diameter is 3 ft .
\bigcirc Yes
\bigcirc No
C. The diameter is 1.5 ft .\bigcirc No
D. The radius is 6 ft .\bigcirc No
